Tag Archives: nanotechnology

Universally Programmable Intelligent Matter with chemSKI

I was notified about this project from the 2000’s

Universally Programmable Intelligent Matter

by Bruce J. Maclennan.

Compare the earlier Maclennan:

Universally programmable intelligent matter (UPIM) is made from a small set of molecular building blocks that are universal in the sense that they can be rearranged to accomplish any purpose that can be described by a computer program. In effect, a computer program controls the behavior of the material at the molecular level. In some applications the molecules self-assemble a desired nanostructure by “computing” the structure and then becoming inactive). In other applications the material remains active so that it can respond, at the molecular level, to its environment or to other external conditions. An extreme case is when programmable supra-molecular clusters act as autonomous agents to achieve some end.

… with the later Buliga:

Define a molecular computer as one molecule which transforms, by random chemical reactions mediated by a collection of enzymes, into a predictable other molecule, such that the output molecule can be conceived as the result of a computation encoded in the initial molecule.

Compare the earlier Maclennan:

… with the later chemSKI rewrite

In relation to chemSKI with tokens:

Oh I’m so relieved that I was not the first to dream about such things.

Is the Seed possible?

Is the Seed possible? Neal Stephenson, in the book The Diamond Age, presents the idea of the Seed, as opposed to the Feed.

The Feed is a hierarchical network of pipes and matter compilers (much like  an Internet of Things done not with electronics, but with nanotechnology, I’d say).

The Seed is a different technology. I selected some  paragraphs from the book, which describe the Seed idea.

“I’ve been working on something,” Hackworth said. Images of a nanotechnological system, something admirably compact and elegant, were flashing over his mind’s eye. It seemed to be very nice work, the kind of thing he could produce only when he was concentrating very hard for a long time. As, for example, a prisoner might do.
“What sort of thing exactly?” Napier asked, suddenly sounding rather tense.
“Can’t get a grip on it,” Hackworth finally said, shaking his
head helplessly. The detailed images of atoms and bonds had been replaced, in his mind’s eye, by a fat brown seed hanging in space, like something in a Magritte painting. A lush bifurcated curve on one end, like buttocks, converging to a nipplelike point on the other.

CryptNet’s true desire is the Seed—a technology that, in their diabolical scheme, will one day supplant the Feed, upon which our society and many others are founded. Protocol, to us, has brought prosperity and peace—to CryptNet, however, it is a contemptible system of oppression. They believe that information has an almost mystical power of free flow and self-replication, as water seeks its own level or sparks fly upward— and lacking any moral code, they confuse inevitability with Right. It is their view that one day, instead of Feeds terminating in matter compilers, we will have Seeds that, sown on the earth, will sprout up into houses, hamburgers, spaceships, and books—that the Seed
will develop inevitably from the Feed, and that upon it will be
founded a more highly evolved society.

… her dreams had been filled with seeds for the last several years, and that every story she had seen in her Primer had been replete with them: seeds that grew up into castles; dragon’s teeth that grew up into soldiers; seeds that sprouted into giant beanstalks leading to alternate universes in the clouds; and seeds, given to hospitable, barren couples by itinerant crones, that grew up into plants with bulging pods that contained happy, kicking babies.

Arriving at the center of the building site, he reached into his bag and drew out a great seed the size of an apple and pitched it into the soil. By the time this man had walked back to the spiral road, a tall shaft of gleaming crystal had arisen from the soil and grown far above their heads, gleaming in the sunlight, and branched out like a tree. By the time Princess Nell lost sight of it around the corner, the builder was puffing contentedly and looking at a crystalline vault that nearly covered the lot.

All you required to initiate the Seed project was the rational,
analytical mind of a nanotechnological engineer. I fit the bill
perfectly. You dropped me into the society of the Drummers like a seed into fertile soil, and my knowledge spread through them and permeated their collective mind—as their thoughts spread into my own unconscious. They became like an extension of my own brain.

_________________________

Now, suppose the following.

We already have an Internet of Things, which would serve as an interface between the virtual world and the real world, so there is really not much difference between the two, in the specific sense that something in the former could easily produce effects in the latter.

Moreover, instead of nanotechnology, suppose that we are content with having, on the Net, an artificial chemistry which would mirror the real chemistry of the world, at least in it’s functioning principles:

  1.   it works in a decentralized, distributed way
  2. does not need an overlooking controller, because all interactions are possible only when there is spatial and temporal proximity
  3. it works without  needing to have a meaning, purpose or in any other ways  being oriented to problem solving
  4. does not need to halt
  5. inputs, processing and output have the same nature (i.e. just chemical molecules and their proximity-based interactions).

In this  world, I see a Seed as a dormant, inactive artificial chemical molecule.  When the Seed is planted (on the Net),

  1. it first grows into a decentralized, autonomous network (i.e. it starts to multiply, to create specialized parts, like a real seed which grows into a tree),
  2. then it starts computing (in the chemical sense, it starts to self-process it’s structure)
  3. and interacts with the real world (via the sensors and effectors available via the IoT) until it creates something in the real world.

_____________________

Notes:

  •  clearly, the artificial chemistry I am thinking about is chemlambda
  •  the principles of the sort of working of this artificial chemistry are those of the Distributed GLC

___________________________