Tag Archives: Neal Stephenson

Morlocks and eloi in the Internet of Things

For any fan of Neal Stephenson and Cory Doctorow,  the contents of the following opinion piece on goals and applications of the Internet of Things (IoT) should be no great surprise.

I am using the post Technical Machine – Designing for Humans as a study case.

[ Technical Machine is the company which builds  the Tessel. This is a product with a great potential! I wish I could use tessels for   the purpose explained in the post Experimental alife IoT with Tessel .  ]

This nice post is interesting in itself, but it is also an example of the shifting of the ideology concerning the Internet of Things.

I extract two contradictory quotes from the post and then I discuss them (and explain why they seem to me contradictory).

(1) ” A completely interactive tool, one that seamlessly incorporates humans as a piece of the system, is a tool that people don’t even think about. That’s the end goal: Ubiquitous Computing as Mark Weiser imagined it. Every object is an embedded device, and as the user, you don’t even notice the calm flow of optimization.
The Nest thermostat is a good example of this sort of calm technology. The device sits on your wall, and you don’t spend much time interacting with it after the initial setup. It learns your habits: when you’re home, when you’re not, what temperatures you want your house to be at various points in the day. So you, as the user, don’t think about it. You just live in a world that’s better attuned to you.”

_______

(2) “I think that one of the most interesting things we’ll see in the near future is the creation of non-screen interfaces. Interacting with technology, we rely almost solely on screens and buttons. But in the physical world, we use so many other interfaces. […] there’s a lot of fascinating work going on to receive outputs from humans. […] The implications there are amazing: you can wire up your own body as an electrical input into any electrical system– like a computer, or a robot, or whatever else you might build. You can control physical and digital things just by thinking really hard or by twitching your fingers.”

_______________

Now the discussion. Why are (1) and (2) contradictory?

I shall explain this by using the morlocks/eloi evocative oversimplification.

From historical reasons maybe the morlocks (technical nerds) are trained/encouraged/selected to hate discussions, human exchanges and interactions in general. Their dream technology is one like in (1), i.e. one which does not talk with the humans, but quietly optimize (from the morlock pov) the eloi environment.

On the contrary, the eloi love to talk, love to interact one with the others. In fact the social Net is a major misuse of morlock technology by eloi. Instead of a tool for fast and massive share of data, as the morlocks designed it, the Net became a very important (most important?) fabric of human interactions, exchanging lolcats images and sweet little nonsenses which make the basis of everyday empathic interaction with our fellow humans. And much more: the eloi prefer to use this (dangerous) tool for communicating, even if they know that the morlocks are sucking big data from them. They (the eloi) would prefer by far to not be in bayesian bubbles, but that’s life, they are using opportunistically things they don’t understand how they work, despite being told to be more careful.

The quote (2) show that people start to think about the IoT as an even more powerful tool of communication. OK, we have this nice technology which baby-sits us and we live calm lives because quietly the machine optimizes the little details without asking us. But, think that we can use the bit IoT machine for more than conversations. We can use it as the bridge which unites the virtual and the meat spaces, we can make real things  from discussions and we can discuss about real objects.

This is a much more impressive application of the IoT than the one which optimizes our daily life. It is something which would allow to make our dreams come true, literary! And collaboratively.

I have argued before about that, noticing that “thing” means both an assembly and a discussion (idea taken via Kenneth Olwig) and object is nothing but the result,  or outcome of a discussion, or evidence for a discussion. See the more at the post Notes for Internet of Things not Internet of objects.

It’s called “Internet of Things” and not “Internet of Objects” and it seems that morlocks start to realize this.

_________________________________________

 

 

 

Is the Seed possible?

Is the Seed possible? Neal Stephenson, in the book The Diamond Age, presents the idea of the Seed, as opposed to the Feed.

The Feed is a hierarchical network of pipes and matter compilers (much like  an Internet of Things done not with electronics, but with nanotechnology, I’d say).

The Seed is a different technology. I selected some  paragraphs from the book, which describe the Seed idea.

“I’ve been working on something,” Hackworth said. Images of a nanotechnological system, something admirably compact and elegant, were flashing over his mind’s eye. It seemed to be very nice work, the kind of thing he could produce only when he was concentrating very hard for a long time. As, for example, a prisoner might do.
“What sort of thing exactly?” Napier asked, suddenly sounding rather tense.
“Can’t get a grip on it,” Hackworth finally said, shaking his
head helplessly. The detailed images of atoms and bonds had been replaced, in his mind’s eye, by a fat brown seed hanging in space, like something in a Magritte painting. A lush bifurcated curve on one end, like buttocks, converging to a nipplelike point on the other.

CryptNet’s true desire is the Seed—a technology that, in their diabolical scheme, will one day supplant the Feed, upon which our society and many others are founded. Protocol, to us, has brought prosperity and peace—to CryptNet, however, it is a contemptible system of oppression. They believe that information has an almost mystical power of free flow and self-replication, as water seeks its own level or sparks fly upward— and lacking any moral code, they confuse inevitability with Right. It is their view that one day, instead of Feeds terminating in matter compilers, we will have Seeds that, sown on the earth, will sprout up into houses, hamburgers, spaceships, and books—that the Seed
will develop inevitably from the Feed, and that upon it will be
founded a more highly evolved society.

… her dreams had been filled with seeds for the last several years, and that every story she had seen in her Primer had been replete with them: seeds that grew up into castles; dragon’s teeth that grew up into soldiers; seeds that sprouted into giant beanstalks leading to alternate universes in the clouds; and seeds, given to hospitable, barren couples by itinerant crones, that grew up into plants with bulging pods that contained happy, kicking babies.

Arriving at the center of the building site, he reached into his bag and drew out a great seed the size of an apple and pitched it into the soil. By the time this man had walked back to the spiral road, a tall shaft of gleaming crystal had arisen from the soil and grown far above their heads, gleaming in the sunlight, and branched out like a tree. By the time Princess Nell lost sight of it around the corner, the builder was puffing contentedly and looking at a crystalline vault that nearly covered the lot.

All you required to initiate the Seed project was the rational,
analytical mind of a nanotechnological engineer. I fit the bill
perfectly. You dropped me into the society of the Drummers like a seed into fertile soil, and my knowledge spread through them and permeated their collective mind—as their thoughts spread into my own unconscious. They became like an extension of my own brain.

_________________________

Now, suppose the following.

We already have an Internet of Things, which would serve as an interface between the virtual world and the real world, so there is really not much difference between the two, in the specific sense that something in the former could easily produce effects in the latter.

Moreover, instead of nanotechnology, suppose that we are content with having, on the Net, an artificial chemistry which would mirror the real chemistry of the world, at least in it’s functioning principles:

  1.   it works in a decentralized, distributed way
  2. does not need an overlooking controller, because all interactions are possible only when there is spatial and temporal proximity
  3. it works without  needing to have a meaning, purpose or in any other ways  being oriented to problem solving
  4. does not need to halt
  5. inputs, processing and output have the same nature (i.e. just chemical molecules and their proximity-based interactions).

In this  world, I see a Seed as a dormant, inactive artificial chemical molecule.  When the Seed is planted (on the Net),

  1. it first grows into a decentralized, autonomous network (i.e. it starts to multiply, to create specialized parts, like a real seed which grows into a tree),
  2. then it starts computing (in the chemical sense, it starts to self-process it’s structure)
  3. and interacts with the real world (via the sensors and effectors available via the IoT) until it creates something in the real world.

_____________________

Notes:

  •  clearly, the artificial chemistry I am thinking about is chemlambda
  •  the principles of the sort of working of this artificial chemistry are those of the Distributed GLC

___________________________

How to plant a Seed (I)

In  The Diamond Age there is the Feed and, towards the end, appears the Seed.

There are, not as many as I expected, but many places where this Seed idea of Neal Stephenson is discussed. Most of them discuss it in relation to the Chinese  Ti yong  way of life, following the context where the author embeds the idea.

Some compare the Seed idea with open source.

For me, the Seed idea becomes interesting when is put together with distributed, decentralized computing. How to make a distributed Seed?

If you start thinking about this, it makes even more sense if you add one more ingredient: the Internet of Things.

Imagine a small, inactive, dormant, virtual thing (a Seed) which is planted somewhere in the fertile ground of  the  IoT. After that it becomes active, it grows, becomes a distributed, decentralized computation. Because it lives in the IoT it can have effects in the physical world, it can interact with all kinds of devices connected with the IoT, thus it can become a Seed in the sense of Neal Stephenson.

Chemlambda is a new kind of  artificial chemistry, which is intended to be used in distributed computing, more specifically in decentralized computing.  As a formalism it is a variant of graphic lambda calculus, aka GLC.  See the page  Distributed GLC for details of this project.

So, I am thinking about how to plant a chemlambda Seed. Concretely, what could pass for a Seed in chemlambda and in what precise sense can be planted?

In the next post I shall give technical details.