Category Archives: discussion

Quine graphs (3), ouroboros, hapax and going public

Several news:

I decided that progressively I’m going to go public, with a combination of arXiv, Github and Zenodo (or Figshare), and publication. But there is a lot of stuff I have to publish and that is why this will happen progressively. Which means it will be nice to watch because it is interesting, for me at least,  to answer to the question:

What the … does a researcher when publishing? What is this for? Why?

Seriously, the questions are not at all directed against classical publication, nor are they biased versus OA. When you publish serially, like a researcher, you often tell again and again a story which evolves in time. To make a comparison, it is like a sequence of frames in a movie.

Only that it is not as simple. It is not quite like a sequence of frames,  is like a sequence of pictures, each one with it’s repeating tags, again and again.

Not at all compressed. And not at all like an evolving repository of programs which get better with time.

6 months since my first javascript only

… program, this one: How time flows: Gutenberg time vs Internet time . Before I used js only for the latest stage, written (clumsily, I admit) by other programs. Since then I wrote hapax  and I modified other scripts to fit my needs, mainly, but this corrected a gap in my education 🙂

Oh btw if anybody interested to see/interact on this talk I’d like to propose: [adapted from a pdf (sigh) for my institution management, though they are in the process to reverse to  the pre-internet era  and they managed to nuke all mail addresses @imar.ro a domain which was  rock solid since at least 20 years; that’s why I post it here]

A kaleidoscope of graph rewrite systems in topology, metric geometry and computer science
Graph rewrite systems are used in many research domains, two among many examples are Reidemeister moves in knot theory or Interaction Combinators in computer science. However, the use of graph rewrites systems is often domain dependent. Indeed, for the knot theory example we may use the Reidemeister move in order to prove that the Kauffman bracket is a knot invariant, which means that it does not change after the graph is modified by any rewrite. In the other case given as an example, Interaction Combinators are interesting because they are Turing universal: any computation can be done with IC rewrite rules and the rewrites are seen as the computational steps which modify the graphs in a significant way.

In this talk I want to explain, for a general audience, the ocurence and relations among several important graph rewrite systems. I shall start with lambda calculus and the Church-Turing thesis, then I shall describe Lafont’ Interaction Combinators [1]. After that I shall talk about graphic lambda calculus [2], about joint work with Louis Kauffman [3] on relations with knot theory. Finally I explain how I, as a mathematician, arrived to study graph rewrites systems applications in computer science, starting from emergent algebras [4] proposed in relation with sub-riemannian geometry and ending with chemlambda [5], hapax (demo page [6], presentation slides [7]) and em-convex [8] with the associated graph rewrite system [9] (short of “kaleidoscope”).

During the talk I shall use programs which are based on graph rewrites, which are free to download and play with from public repositories.

[1] Y. Lafont, Interaction Combinators, Information and Computation 137, 1, (1997), p. 69-101
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.57.5761&rep=rep1&type=pdf

[2] M. Buliga, Graphic lambda calculus. Complex Systems 22, 4 (2013), p. 311-360
https://www.complex-systems.com/abstracts/v22_i04_a01/

[3] M. Buliga, L.H. Kauffman, Chemlambda, Universality and Self-Multiplication, The 2019 Conference on Artificial Life 2014 NO. 26, p.490-497
https://www.mitpressjournals.org/doi/pdf/10.1162/978-0-262-32621-6-ch079
[4] M. Buliga, Emergent algebras, arXiv:0907.1520
https://arxiv.org/abs/0907.1520

[5] M. Buliga, Chemlambda, GitHub repository (2017)
https://github.com/chorasimilarity/chemlambda-gui/blob/gh-pages/dynamic/README.md
[6] M. Buliga, Hapax, (2019) demo page http://imar.ro/~mbuliga/hapax.html,
Github repository https://github.com/mbuliga/hapax

[7] M. Buliga, Artificial physics of artificial chemistries, slides (2019)
http://imar.ro/~mbuliga/genchem.html

[8] M. Buliga, The em-convex rewrite system, arXiv:1807.02058
https://arxiv.org/abs/1807.02058

[9] M. Buliga, Anharmonic lambda calculus, or kali (2019),
demo page https://mbuliga.github.io/kali24.html

 

I’d like to make this much more funny than it looks by using these js scripts. Also “kaleidoscope” is tongue-in-cheek, but that’s something only we know. Anyway kali is on the way to be finished, simplified and documented. And somehow different. For a short while, encouraged by these js scripts and similar attempts, I tried to believe that maybe, just maybe there is a purely local way to do untyped lambda, right around the corner. But it seems there isn’t, although it was fun to try again to search it. But then what to do? Maybe to be honest with the subject and say that indeed a purely local system, geometry inspired, exists, it it Turing universal, but it is not lambda calculus (although it can be guided by humans into being one, so that’s not the problem)? Maybe going back to my initial goal, which was to understand space computationally, which I do now? Yeah, I know that lambda calculus is fascinating, even more if untyped,  but em is so much better!

 

Some things about a subscription list sharing

I got it that what I write here is both of some interest (math researcher typical understatement) and not enough, but what can I do? Open Science in the way I try to (discover how to) do (it) is not obvious at all for me. Should I share fluff and publish in journals? (I’ll do it if I have to but I am not yet there, I still have some optimism and ideals left). It would be good for me too to share solid stuff which is read and used as a building block fairly, because I am a serial manic writer of ideas and I follow them for years.

So I’m back to a subscription list sharing. I think that I can post fluff for free and I can post rock solid stuff to subscribers, under a CC-BY-4.0. I have to know who are my subscribers and what are their interests. I could answer  a 7 questions/week, share program attempts which are not public, describe at my leisure exactly how this is connected to that, but I won’t work for some idiot benefit in academic research, nor shall I inspire ideas to projects which lack in originality. That’s why I have to know whom am I speaking with.

You like my visual work? You got it that I do have things I don’t share, because I love them and they can’t be shared without receiving something like love in return.

For example I may have a fluff public post, even misleading in some clever detail and also, for subscribers only, the true post available.

I’m thinking about it.

So let’s start: send me signals here or send your answer to the mail from this page. Should be a simple yes or no, you should use any identity is convenient to you, your answer does not imply anything further. If I start a subscription list, this will not be part of it.

Cryptocurrency for life (2)

Continues from (part 1). Back home and almost healed I read Anand Giridharadas crusade where he has a very reasonable point:

“But then I had the following thought.

Why are the people not connected to Epstein leaving this orbit, while people connected to Epstein remain?

Shouldn’t it be the other way around?”

To have a direct confirmation of these self-protected circles of power is interesting. Rich donors and academia are some of the players. I’m directly interested about this from the point of view of somebody who tries to do Open Science since a long time: to paraphrase Anand

Why are the people not obeying old practices of academic publication leaving this orbit, while people connected with the useless legacy publishers remain?

Shouldn’t it be the other way round?

 

The same academic managers are in so friendly relations with publishers which do not offer anything to the scientific community. The honest effort of Open Access has become a caricature where it is entirely normal to baptize the_author_pays_for_publication as the way to do Open Access.

OK, so what is this having to do with the subject of this post? Simple: if the cryptocurrencies communities do want to explore new social models then research (of biological life as decentralized computing, as I suggest) should be a part of it. You can’t turn to the old fatigued elites, because they already gave what they can do to MS or others alike. They don’t have new ideas since a very long time. Hot air with old boys support.

But now comes my point: would these cryptocurrencies efforts support a new research structure? Why not? There are very clever people there who understand the importance.

But maybe they are in bed with the circle of power. Just maybe.

The following are beliefs only (what proof can you ask?). For reasons along the lines explained previously, since years I’m very skeptical about anything ethereum based, but I am really amazed by btc. Well, but who really know?

Does not the cryptocurrency community (or the parts of it which are not in bed with the enemy) want to make a point in research?

 

 

 

Cryptocurrency for life

Biological life is a billions years old experiment. The latest social experiments, capitalism and communism, are much more recent. Cryptocurrencies experiments are a really new response to the failures of those social experiments.

We don’t really understand biological life starting from it’s computational principles. As well, we don’t understand in depth decentralized computation which is at the basis of many cryptocurrencies experiments.

My point is that we try to solve the same problem, so that we shall be able to evolve socially at a human time scale. Not in hundred thousands years, in decades instead.

Therefore it would be only natural if the active people in the cryptocurrency realm would dedicate significant financial support to the problem of life.

How time flows: Gutenberg time vs Internet time

Based on  a HN comment, I made a page which proposes the hypothesis:

(Δ t-historic) = (Δ t-today)^(log 5/ log 2)

 

where the Δ t-historic is the time in decades from the invention of the printing press and Δ t-today is the time in decades from the opening of the ARPANET.

A collection of interesting correspondences is given, as well as some predictions, if this hypothesis is to be taken seriously.

The page has a small JS script for a calculator t-historic to t-today, so you can easily find new correspondences if you like the game. Please let me know in case.

UPDATE: There is now a very amusing python3 script by 4lhc, at this gist. It lets you write a year, recent or old, then it proposes two events, one from the old time and one from recent time. I played with it on my computer and it’s just cute!

[I had to install the wikipedia module and then the correct command is

“python3 The_Gutenberg_Internet_analogy.py”

wait a short moment and get the pair of events!]

 

 

An example of “Official EU Agencies Falsely Report More Than 550 Archive.org URLs as Terrorist Content”

Today I read Official EU Agencies Falsely Report More Than 550 Archive.org URLs as Terrorist Content.  Two comments on this.

1. It happened to me in Feb 2019. I archived one of my stories from the chemical sneakernet universe. The original story is posted on telegra.ph. Here is the message which appeared when I checked the archived link:

GVFoyIh

What? I contacted archive.org and got an answer from the webmaster, pretty fast. The problem was with telegra.ph, not with my link in particular. Now the archived link is available.

After I sent the message to archive but before I received the answer, I searched for a way to contact EU IRU, to ask what the problem might be.  I was unable to identify any such way. However there was a way to send a message to EU officials, who might redirect my message to whom it may concern. It worked, but it took longer than the time needed by archive webmaster to respond and unblock the link. I was not contacted since.

2. As you see in the post from archive, it was not EU IRU the institution which sent the blocking orders. But nevermind, how can one try to block arXiv articles? This reminded me of a very recent story: Google Scholar lost my Molecular computers arXiv article. As the article is on the same subject as the story from point 1, I wonder if by any (mis)chance Google Scholar received a blocking order.