Tag Archives: artificial intelligence

Tay has been retired, Blade Runner style

It is always unexpected when fiction becomes real. Tay, the adolescent AI, survived for about 24 hrs on Twitter. She turned into something socially unacceptable. Then she has been retired. See Gizmodo story.

Almost two years ago I posted Microbes take over and then destroy the HAL 9000 prototype. I gave 9 seconds as an estimate for the chance of life of an AI in the real world, where there is no control and faced with  the “extremely dynamic medium of decentralized, artificial life based computation we all use every day“(that post suggests an artificial life, not AI version of the future internet).

Now, the story of Tay seems unbelievably close to the Blade Runner world. The genius of Philip K. Dick manifests here because  he mixes AI with synthetic life with real life.

Real people socially hacked Tay. Virtual microbes destroy HAL 9000. The common themes are: in a decentralized environment and AI vs life (real or virtual).

Not many people understand that today obsessions with security, control, privacy are all lost battles.

Advertisements

Artificial life which can be programmed

Artificial life

3_27_quine_huge_short

which can be programmed

ttttt

__________________________________________________________________________________

__________________________________________________________________________________

__________________________________________________________________________________

__________________________________________________________________________________

What if… it can be done? An update of an old fake news post

In May 2014 I made a fake news post (with the tag WHAT IF) called Autodesk releases Seawater. It was about this big name who just released a totally made up product called Seawater.

“SeaWater is a design tool for the artificial life based decentralized Internet of Things.”

In the post it is featured this picture

[source]

scoop-of-water-magnified-990x500… and I wrote:

“As well, it could be  just a representation of the state of the IoT in a small neighbourhood of you, according to the press release describing SeaWater, the new product of Autodesk.”

Today I want to show you this:

3_27_quine

or better go and look in fullscreen HD this video

The contents is explained in the post from the microblogging collection chemlambda

27 microbes. “This is a glimpse of the life of a community of 27 microbes (aka chemlambda quines). Initially the graph has 1278 nodes (atoms) and 1422 edges (bonds). There are hundreds of atoms refreshed and bonds made and broken at once.”

Recall that all this is done with the most simple algorithm, which turns chemlambda into an asynchronous graph rewrite automaton.

A natural development would be to go further, exactly like described in the Seawater post.

Because it can be done 🙂

_________________________________

Rant about Jeff Hawkins “the sensory-motor model of the world is a learned representation of the thing itself”

I enjoyed very much the presentation given by Jeff Hawkins “Computing like the brain: the path to machine intelligence”

 

Around 8:40

Hawkins_1

This is something which could be read in parallel with the passage I commented in the post   The front end visual system performs like a distributed GLC computation.

I reproduce some parts

In the article by Kappers, A.M.L.; Koenderink, J.J.; Doorn, A.J. van, Basic Research Series (1992), pp. 1 – 23,

Local Operations: The Embodiment of Geometry

the authors introduce the notion of  the  “Front End Visual System” .

Let’s pass to the main part of interest: what does the front end?  Quotes from the section 1, indexed by me with (a), … (e):

  • (a) the front end is a “machine” in the sense of a syntactical transformer (or “signal processor”)
  • (b) there is no semantics (reference to the environment of the agent). The front end merely processes structure
  • (c) the front end is precategorical,  thus – in a way – the front end does not compute anything
  • (d) the front end operates in a bottom up fashion. Top down commands based upon semantical interpretations are not considered to be part of the front end proper
  • (e) the front end is a deterministic machine […]  all output depends causally on the (total) input from the immediate past.

Of course, today I would say “performs like a distributed chemlambda computation”, according to one of the strategies described here.

Around 17:00 (Sparse distributed representation) . ” You have to think about a neuron being a bit (active:  a one, non active: a zero).  You have to have many thousands before you have anything interesting [what about C. elegans?]

Each bit has semantic meaning. It has to be learned, this is not something that you assign to it, …

… so the representation of the thing itself is its semantic representation. It tells you what the thing is. ”

That is exactly what I call “no semantics”! But is much better formulated as a positive thing.

Why is this a form of “no semantics”? Because as you can see the representation of the thing itself edits out the semantics, in the sense that “semantics” is redundant, appears only at the level of the explanation about how the brain works, not in the brain workings.

But what is the representation  of the thing itself? A chemical blizzard in the brain.

Let’s put together the two ingredients into one sentence:

  • the sensory-motor model of the world is a learned representation of the thing itself.

Remark that as previously, there is too much here: “model” and “representation” sort of cancel one another, being just superfluous additions of the discourse. Not needed.

What is left: a local, decentralized.  asynchronous, chemically based, never ending “computation”, which is as concrete as the thing (i.e. the world, the brain) itself.

I put “computation” in quotes marks because this is one of the sensible points: there should be a rigorous definition of what that “computation” means. Of course, the first step would be fully rigorous mathematical proof of principle that such a “computation”, which satisfies the requierements listed in the previous paragraph, exists.

Then, it could be refined.

I claim that chemlambda is such a proof of principle. It satisfies the requirements.

I don’t claim that brains work based on a real chemistry instance of chemlambda.

Just a proof of principle.

But how much I would like to test this with people from the frontier mentioned by Jeff Hawkins at the beginning of the talk!

In the following some short thoughts from my point of view.

While playing with chemlambda with the strategy of reduction called “stupid” (i.e. the simplest one), I tested how it works on the very small part (of chemlambda) which simulates lambda calculus.

Lambda calculus, recall, is one of the two pillars of computation, along with the Turing machine.

In chemlambda, the lambda calculus appears as a sector, a small class of molecules and their reactions. Contrary to the Alchemy of Fontana and Buss, abstraction and application (operations from lambda calculus) are both concrete (atoms of molecules). The chemlambda artificial chemistry defines some very general, but very concrete local chemical interactions (local graph rewrites on the molecules) and some (but not all) can be interpreted as lambda calculus reductions.

Contrary to Alchemy, the part which models lambda calculus is concerned only with untyped lambda calculus without extensionality, therefore chemical molecules are not identified with their function, not have they definite functions.

Moreover, the “no semantics” means concretely that most of the chemlambda molecules can’t be associated to a global meaning.

Finally, there are no “correct” molecules, everything resulted from the chemlambda reactions goes, there is no semantics police.

So from this point of view, this is very nature like!

Amazingly,  the chemical reductions of molecules which represent lambda terms reproduce lambda calculus computations! It is amazing because with no semantics control, with no variable passing or evaluation strategies, even if the intermediary molecules don’t represent lambda calculus terms, the computation goes well.

For example the famous Y combinator reduces first to only a small (to nodes and 6 port nodes molecule), which does not have any meaning in lambda calculus, and then becomes just a gun shooting “application” and “fanout” atoms (pair which I call a “bit”). The functioning of the Y combinator is not at all sophisticated and mysterious, being instead fueled by the self-multiplication of the molecules (realized by unsupervised local chemical reactions) which then react with the bits and have as effect exactly what the Y combinator does.

The best example I have is the illustration of the computation of the Ackermann function (recall: a recursive but not primitive recursive function!)

What is nice in this example is that it works without the Y combinator, even if it’s a game of recursion.

But this is a choice, because actually, for many computations which try to reproduce lambda calculus reductions, the “stupid” strategy used with chemlambda is a bit too exuberant if the Y combinator is used as in lambda calculus (or functional programming).

The main reason is the lack of extension, there are no functions, so the usual functional programming techniques and designs are not the best idea. There are shorter ways in chemlambda, which employ better the “representation of the thing itself is its own semantic interpretation” than FP.

One of those techniques is to use instead of long linear and sequential lambda terms (designed as a composition of functions), so to use instead of that another architecture, one of neurons.

For me, when I think about a neural net and neural computation, I tend to see the neurons and synapses as loci of chemical activity. Then  I just forget about these bags of chemicals and I see a chemical connectome sort of thing, actually I see a huge molecule suffering chemical reactions with itself, but in a such a way that its spatial extension (in the neural net), phisically embodied by neurons and synapses and perhaps glial cells and whatnot, this spatial extention is manifested in the reductions themselves.

In this sense, the neural architecture way of using the Y combinator efficiently in chemlambda is to embed it into a neuron (bag of chemical reactions), like sketched in the following simple experiment

Now, instead of a sequential call of duplication and application (which is the way the Y combinator is used in lambda calculus), imagine a well designed network of neurons which in very few steps build a (huge, distributed) molecule (instead of a perhaps very big number of sequential steps) which at it’s turn reduce itself in very few steps as well, and then this chemical connectome ends in a quine state, i.e. in a sort of dynamic equilibrium (reactions are happening all the time but they combine in such a way that the reductions compensate themselves into a static image).

Notice that the end of the short movie about the neuron is a quine.

For chemlambda quines see this post.

In conclusion there are chances that this massively parallel (bad name actually for decentralized, local) architecture of a neural net, seen as it’s chemical working, there are chances that chemlambda really can do not only any computer science computation, but also anything a neural net can do.

_________________________________________________________________

List of Ayes/Noes of artificial chemistry chemlambda

List of noes

  • distributed (no unique place, no external passive space)
  • asynchronous (no unique time, no external global time)
  • decentralized (no unique boss, no external acyclic hierarchy)
  • no semantics (no unique meaning, no signal propagation, no values)
  • no functions (not vitalism)
  • no probability

 

List of ayes

__________________________________________________________

FAQ: chemlambda in real and virtual worlds

Q1. is chemlambda different than previous models, like the algorithmic chemistry of Fontana and Buss, or the CHAM of Berry and Boudol?

A1. Yes. In chemlambda we work with certain graphs made of nodes (atoms) and bond (arrows), call such a graph a  molecule.  Then:

  • (A) We work with individual molecules, not with populations of molecules. The molecules encode information in their shape, not in their number.
  • (B) different from algorithmic chemistry, the application and abstraction are atoms of the molecules.
  • (C) There are no variables in chemlambda and there is no need to introduce one species of molecules per variable, like in the previous models.
  • (D) chemlambda and it’s associated computing model (distributed GLC)  work well in a decentralized world, there is no need for having a global space or a global time for the computation.

There is a number of more technical differences, like (non exhaustively):

  • (E)  molecules  are not identified with their functions. Technically, chemlambda rejects eta reduction, so even for those molecules which represent lambda terms, they are not identified (as happens when we use eta reduction) with their function. This calls for an “extreme” functional programming style.
  • (F) only a small part of the chemlambda molecules correspond to lambda terms (there is a lambda calculus “sector”).
  • (G) there is no  global semantics.

__________________________________________________
Q2.  is chemlambda a kind of computing with chemical reaction networks (CRNs)?

A2. No. Superficially, there are resemblances, and really one may imagine CRNs based on chemlambda, but this is not what we are doing.

__________________________________________________

Q3. Why do you think chemlambda has something to tell about the real or even about the living world?

A3. Because the real world, in it’s fundamental workings, does not seem to care about 1D language based constructs which we cherish in our explanation. The real and especially the living world seems to be based on local, asynchronous interactions which are much more like signal transductions and much less like information passing. (See How is different signal transduction from information theory? )
Everything happens locally, in nontrivial but physical ways, leading to emergent complex behaviours. Nature does not care about coordinates and names of things or abstractions, unless they are somehow physically embodied. This is the way chemlambda functions.

__________________________________________________
Q4. Why do you think chemlambda has something to say about the virtual  world of the Net?

A4. Because it puts the accent on alife instead of AI, on decentralization instead of pyramidal constructs.  A microbial ecology like internet is much more realistic to hope to realize than one based on benevolent pyramidal AI constructs (be them clouds, or other corporations constructs). Because real and virtual worlds are consistent only locally.

__________________________________________________
Q5. What about the Internet of Things?

A5. We hope to give to the IoT the role of the bridge which unites two kinds of computations real-virtual, under the same chemistry.

__________________________________________________
Q6. What would happen in your dream world?

A6. There are already some (fake) news about it here: what if

__________________________________________________

 

 

 

Microbes take over and then destroy the HAL 9000 prototype

Today was a big day for the AI specialists and their brainchild, the HAL 9000. Finally, the decision was made to open the isolation bubble which separated the most sophisticated artificial intelligence from the Net.  They  expected that  somehow their brainchild will survive unharmed  when exposed to the extremely dynamic medium of decentralized, artificial life based computation we all use every day.

As the video made by Jonathan Eisen shows,  in about 9   seconds after the super-intelligence was taken out of the quarantine and relayed to the Net “microbes take over and then destroy the” HAL 9000 prototype.

After the experiment, one of the creators of the HAL 9000 told us: “Maybe we concentrated too much on higher level aspects of the mind. We aim for understanding intelligence and rational behaviour, but perhaps we should learn this lesson from Nature, namely that real life is a wonderful, complex tangle of local, low level interactions, and that rational mind is a very fragile epiphenomenon. We tend to take for granted the infrastructure of life which runs in the background.”

“I was expecting this result” said a Net designer. “The strong point of the Alife decentralized functioning of the Net is exactly this: as the microbes, the Net needs no semantics to function. This is what keeps us free from the All Seeing Eye, corporation clouds based Net which was the rule some years ago. This is what gives everybody the trust to use the Net.”

 

___________________________________________

This is another post  which  respond to the challenge from Alife vs AGI.  You are welcome to suggest another one or to make your own.

___________________________________________