Palpatine exposed with a broom

One of the effects of the www is the dissolution of the authority based on bogus. We see this happening everywhere these days, with politicians, bankers and corporations. More recently, there are efforts towards cleansing the scientific publishing scene.

The mechanism of this phenomenon is really simple. Imagine a Star Wars universe with  www: Palpatine would be quickly exposed. His plans are based on the scarcity of the availability of information, like the real economy is (was?) based on the idea that economic goods are those which are scarce.  In the real world with www, the scarcity of access to information has to be made artificial. In the Star Wars universe with www the plans of Palpatine would either fail or Palpatine would make similar attempts to make information scarce.   In this Star Wars universe he would fail, eventually.

Because it is harder to pretend to be good when you are doing bad when everybody knows what you are doing.

This post has been inspired by “Adventures in Peer Review” by Peter Woit and by the article “The New Publishing Scene and the Tenure Case: An Administrator’s View” by Daniele C. Struppa in the Notices of AMS, May 2012, the Scripta Manent publication column which was mentioned in this blog before. The Palpatine example has been inspired by the second paragraph of this article.

Please read them both and follow the links from Woit’s post, especially these:   Retraction Watch and “A computer application in mathematics“, then think about the soundness of  the advices from the AMS  article.

Finally, meditate seriously about the broom (from Abstruse Goose).

UPDATE 18.06.2012: In the Notices of  the AMS,  June-July 2012 issue,  appeared two interesting articles:

The Boycott: Mathematicians Take a Stand by Douglas N. Arnold and Henry Cohn

Elsevier’s Response to the Mathematics Community   by Laura Hassink and David Clark


The gnomon in the greek theater of vision, I

In the post Theatron as an eye I proposed the Greek Theater, or Theatron (as opposed to the “theater in a box”, or Cartesian Theater, see further) as a good model for   vision.

Any model of vision should avoid the homunculus fallacy. What looks less understood is that any good model of vision should avoid the scenic space fallacy. The Cartesian Theater argument against the existence of the homunculus is not, by construction, an argument against the scenic space. Or, in the Cartesian Theater, homunculus and scenic space come to existence in a pair. As a conclusion, it seems that there could not be a model of vision which avoids the homunculus but is not avoiding the scenic space. This observation is confirmed by facts: there is no good, rigorous  model of vision up to date, because all proposed models rely on the a priori existence of a scenic space. There is, on the contrary, a great quantity of experimental data and theoretical partial models which show just how complex the problem of vision is. But, essentially, from a mathematician viewpoint, it is not known how to even formulate the problem of vision.

In the influent paper “The brain a geometry engine”  J. Koenderink proposes that (at least a part of) the visual mechanism is doing a kind of massively parallel computation, by using an embodiment of the geometry of jet spaces (the euclidean infinitesimal geometry of a smooth manifold)  of the scenic space. Jean Petitot continues along this idea, by proposing a neurogeometry of vision based essentially on the sub-riemannian geometry of those jet spaces. This an active mathematical area of research, see for example “Antropomorphic image reconstruction via hypoelliptic diffusion“, by Ugo Boscain et al.

Sub-riemannian geometry is one of my favorite mathematical subjects, because it  is just a  particular model of a metric space with dilations.  Such spaces are somehow fundamental for the problem of vision, I think. Why? because there is behind them a purely relational formalism, called “emergent algebra“, which allow to understand “understanding space” in a purely relational way. Thus I hope emergent algebras could be used in order to formulate the problem of vision as the problem of computing with space, which in turn could be used for getting a good model of vision.

To my surprise, some time ago I have found that this  very complex subject has a respectable age, starting with Pythagora  and Plato!  This is how I arrived to write this blog, as an effort to disseminate what I progressively understand.

This brings me back to the theater and, finally, to gnomon. I cite from previous wiki link:

Hero defined a gnomon as that which, added to an entity (number or shape), makes a new entity similar to the starting entity.

In the greek theater, a gnomon sits in the center of the orchestra (which is the circular place where things happen in the greek thater, later replaced by the scene in the theater in a box). Why?

Three problems and a disclaimer

In this post I want to summarize the list of problems I am currently thinking about. This is not a list of regular mathematical problems, see the disclaimer on style written at the end of the post.

Here is the list:

1. what is “computing with space“? There is something happening in the brain (of a human or of a fly) which is akin to a computation, but is not a logical computation: vision. I call this “computing with space”. In the head there are a bunch of neurons chirping one to another, that’s all. There is no euclidean geometry, there are no a priori coordinates (or other extensive properties), there are no problems to solve for them neurons, there is  no homunculus and no outer space, only a dynamical network of gates (neurons and their connections). I think that a part of an answer is the idea of emergent algebras (albeit there should be something more than this).  Mathematically, a closely related problem is this: Alice is exploring a unknown space and then sends to Bob enough information so that Bob could “simulate” the space in the lab. See this, or this, or this.

Application: give the smallest hint of a purely relational  model of vision  without using any a priori knowledge of the (euclidean or other) geometry of outer space or any  pre-defined charting of the visual system (don’t give names to neurons, don’t give them “tasks”, they are not engineers).

2. non-commutative Baker-Campbell-Hausdorff formula. From the solution of the Hilbert’s fifth problem we know that any locally compact topological group without small subgroups can be endowed with the structure of a “infinitesimally commutative” normed group with dilations. This is true because  one parameter sub-groups  and Gleason metrics are used to solve the problem.  The BCH formula solves then another problem: from the infinitesimal structure of a (Lie) group (that is the vector space structure of the tangent space at the identity and the maniflod structure of the Lie group) and from supplementary infinitesimal data (that is the Lie bracket), construct the group operation.

The problem of the non-commutative BCH is the following: suppose you are in a normed group with dilations. Then construct the group operation from the infinitesimal data (the conical group structure of the tangent space at identity and the dilation structure) and supplementary data (the halfbracket).

The classical BCH formula corresponds to the choice of the dilation structure coming from the manifold structure of the Lie group.

In the case of a Carnot group (or a conical group), the non-commutative BCH formula should be trivial (i.e. x y = x \cdot y, the equivalent of xy = x+y in the case of a commutative Lie group, where by convention we neglect all “exp” and “log” in formulae).

3. give a notion of curvature which is meaningful for sub-riemannian spaces. I propose the pair curvdimension- curvature of a metric profile. There is a connection with problem 1: there is a link between the curvature of the metric profile and the “emergent Reidemeister 3 move” explained in section 6 of the computing with space paper. Indeed, at page 36 there is this figure. Yes, R^{x}_{\epsilon \mu \lambda} (u,v) w is a curvature!

Disclaimer on style. I am not a problem solver, in the sense that I don’t usually like to find the solution of an already formulated problem. Instead, what I do like to do is to understand some phenomenon and prove something about it in the simplest way possible.  When thinking about a subject, I like to polish the partial understanding I have by renouncing to use any “impure” tools, that is any (mathematical) fact which is strange to the subject. I know that this is not the usual way of doing the job, but sometimes less is more.