Tag Archives: internet of things

A year review at chorasimilarity, second half

In parallel with the stuff about chemlambda, described in the first half, there was something else happening. I prepared some noted for a talk at the 4th Offtopicarium, in the form of a post here:

Notes for the “Internet of things not internet of objects”

The starting point is that what almost everybody describes as the Internet of Things is actually an Internet of Objects. We don’t want an Internet of Objects, because that would be only the usual accumulation of gadgetry and fads, i.e. only a very limited and uninspired construction. It is as imaginative as a big budget movie or as tasty as a fastfood menu.

Because reality is not objective. Reality is made of things, i, e. discussions between us humans about everything. When a certain agreement (or boredom, or faith, etc) is attained in the discussion, the said thing dies and dries into an object.

Discussions between humans thrive when individualities are respected and where there is a place which allows free mixing of ideas. A space. A theater.

Not the theater-in-a-box of perception, where the space is a scene, the dual of the homunculus, the king of fallacies. Because a scene is not a thing, but an object. On the scene the discussion is replaced by an ideology (see this or, from the scenographer point of view this).

Instead, a Greek theater under the sun could be a good starting point. As a machine which implements a theatrical distributed computing.

In order to do so, a necessary step is to separate computation from meaning. That would be only a small step forward after the separation of form from content principle. That’s a very short post, I reproduce most of it here:

One of the principles which make the net possible, as stated by Tim Berners-Lee,

separation of form from content: The principle that one should represent separately the essence of a document and the style with which it is presented.

Applied to decentralized computing, this means no semantics.

[One more confirmation of my impression that logic is something from the 21st century disguised in 19th century clothes.]

At this point the thread described here meets the one from the first half review: one of the discoveries of chemlambda, seen as artificial chemistry, is that it is possible to make this separation.


I stop here with the second half, there will be surely more halves to come 🙂


Morlocks and eloi in the Internet of Things

For any fan of Neal Stephenson and Cory Doctorow,  the contents of the following opinion piece on goals and applications of the Internet of Things (IoT) should be no great surprise.

I am using the post Technical Machine – Designing for Humans as a study case.

[ Technical Machine is the company which builds  the Tessel. This is a product with a great potential! I wish I could use tessels for   the purpose explained in the post Experimental alife IoT with Tessel .  ]

This nice post is interesting in itself, but it is also an example of the shifting of the ideology concerning the Internet of Things.

I extract two contradictory quotes from the post and then I discuss them (and explain why they seem to me contradictory).

(1) ” A completely interactive tool, one that seamlessly incorporates humans as a piece of the system, is a tool that people don’t even think about. That’s the end goal: Ubiquitous Computing as Mark Weiser imagined it. Every object is an embedded device, and as the user, you don’t even notice the calm flow of optimization.
The Nest thermostat is a good example of this sort of calm technology. The device sits on your wall, and you don’t spend much time interacting with it after the initial setup. It learns your habits: when you’re home, when you’re not, what temperatures you want your house to be at various points in the day. So you, as the user, don’t think about it. You just live in a world that’s better attuned to you.”


(2) “I think that one of the most interesting things we’ll see in the near future is the creation of non-screen interfaces. Interacting with technology, we rely almost solely on screens and buttons. But in the physical world, we use so many other interfaces. […] there’s a lot of fascinating work going on to receive outputs from humans. […] The implications there are amazing: you can wire up your own body as an electrical input into any electrical system– like a computer, or a robot, or whatever else you might build. You can control physical and digital things just by thinking really hard or by twitching your fingers.”


Now the discussion. Why are (1) and (2) contradictory?

I shall explain this by using the morlocks/eloi evocative oversimplification.

From historical reasons maybe the morlocks (technical nerds) are trained/encouraged/selected to hate discussions, human exchanges and interactions in general. Their dream technology is one like in (1), i.e. one which does not talk with the humans, but quietly optimize (from the morlock pov) the eloi environment.

On the contrary, the eloi love to talk, love to interact one with the others. In fact the social Net is a major misuse of morlock technology by eloi. Instead of a tool for fast and massive share of data, as the morlocks designed it, the Net became a very important (most important?) fabric of human interactions, exchanging lolcats images and sweet little nonsenses which make the basis of everyday empathic interaction with our fellow humans. And much more: the eloi prefer to use this (dangerous) tool for communicating, even if they know that the morlocks are sucking big data from them. They (the eloi) would prefer by far to not be in bayesian bubbles, but that’s life, they are using opportunistically things they don’t understand how they work, despite being told to be more careful.

The quote (2) show that people start to think about the IoT as an even more powerful tool of communication. OK, we have this nice technology which baby-sits us and we live calm lives because quietly the machine optimizes the little details without asking us. But, think that we can use the bit IoT machine for more than conversations. We can use it as the bridge which unites the virtual and the meat spaces, we can make real things  from discussions and we can discuss about real objects.

This is a much more impressive application of the IoT than the one which optimizes our daily life. It is something which would allow to make our dreams come true, literary! And collaboratively.

I have argued before about that, noticing that “thing” means both an assembly and a discussion (idea taken via Kenneth Olwig) and object is nothing but the result,  or outcome of a discussion, or evidence for a discussion. See the more at the post Notes for Internet of Things not Internet of objects.

It’s called “Internet of Things” and not “Internet of Objects” and it seems that morlocks start to realize this.





The true Internet of Things, decentralized computing and artificial chemistry

A thing is a discussion between several participants.  From the point of view of each participant, the discussion manifests as an interaction between the participant with the other participants, or with itself.

There is no need for a global timing of the interactions between participants involved in the discussion, therefore we talk about an asynchronous discussion.

Each participant is an autonomous entity. Therefore we talk about a decentralized discussion.

The thing is the discussion and the discussion is the thing.

When the discussion reaches an agreement, the agreement is an object. Objects are frozen discussions, frozen things.

In the true Internet of Things, the participants can be humans or virtual entities. The true internet of Things is the thing of all things, the discussion of all discussions. Therefore the true Internet of Things has to be asynchronous and decentralized.

The objects of the true Internet of Things are the objects of discussions. For example a cat.

Concentrating exclusively on objects is only a manifestation of the modern aversion of having a conversation. This aversion manifests in many ways (some of them extremely useful):

  • as a preference towards analysis, one of the tools of the scientific method
  • as the belief in the semantics, as if there is a meaning which can be attached to an object, excluding any discussion about it
  • as externalization of discussions, like property rights which are protected by laws, like the use of the commons
  • as the belief in objective reality, which claims that the world is made by objects, thus neglecting the nature of objects as agreements reached (by humans) about some selected aspects of reality
  • as the preference towards using bottlenecks and pyramidal organization as a mean to avoid discussions
  • as various philosophical currents, like pragmatism, which subordinates things (discussions) to their objects (although it recognizes the importance of the discussion itself,  as long as it is carefully crippled in order that it does not overthrow the object’s importance).

Though we need agreements, we need to rely on objects (as evidence), there is no need to limit the future true Internet of Things to an Internet of Objects.


We already have something  called Internet of Things, or at least something which will become an Internet of Things, but it seems to be designed as an Internet of Objects. What is the difference? Read Notes for “Internet of things not Internet of objects”.

Besides humans, there will be  the other participants in the  IoT,  in fact the underlying connective mesh which should support the true Internet of Things.  My proposal is to use an artificial chemistry model mixed with the actor model, in order to have only the strengths of both models:

  1.   decentralized,
  2. does not need an overlooking controller,
  3. it works without  needing to have a meaning, purpose or in any other ways  being oriented to problem solving
  4. does not need to halt
  5. inputs, processing and output have the same nature (i.e. just chemical molecules and their proximity-based interactions).

without having the weaknesses:

  1.  the global view of Chemical Reaction Networks,
  2. the generality of behaviours of the actors in the actor model, which forces the model to be seen as a high level, organizing the way of thinking about particular computing tasks, instead of being a very low level, simple and concrete model.


With these explanations, please go and read again  three  older posts and a page, if interested to understand more:


Mathematics, things, objects and brains

This is about my understanding of the post Mathematics and the Real by Louis Kauffman.

I start from this quote:

One might hypothesize that any mathematical system will find natural realizations. This is not the same as saying that the mathematics itself is realized. The point of an abstraction is that it is not, as an abstraction, realized. The set { { }, { { } } } has 2 elements, but it is not the number 2. The number 2 is nowhere “in the world”.

Recall that there are things and objects. Objects are real, things are discussions. Mathematics is made of things. In Kauffman’s example the number 2 is a thing and the set { { }, { { } } } is an object of that thing.

Because an object is a reification of a thing. It is therefore real, but less interesting than the thing, because it is obtained by forgetting (much of) the discussion about it.

Reification is not a forgetful functor, though. There are interactions in both directions, from things to objects and from objects to things.

Indeed, in the rhino thing story, a living rhinoceros is brought in Europe. The  sight of it was new. There were remnants of ancient discussions about this creature.

At the beginning that rhinoceros was not an object, not a thing. For us it is a thing though, and what I am writing about it is part of that thing.

From the discussion about that rhinoceros, a new thing emerged. A rhinoceros is an armoured beast which has a horn on its back which is used for killing elephants.

The rhino thing induced a wave of reifications:  nearby the place where that rhino was seen for the first time in Portugal, the Manueline BelĂ©m Tower  was under construction at that moment. “The tower was later decorated with gargoyles shaped as rhinoceros heads under its corbels.[11]” [wiki dixit]

Durer’s rhino, another reification of that discussion. And a vector of propagation of the discussion-thing. Yet another real effect, another  object which was created by the rhino thing is “Rinoceronte vestido con puntillas (1956) by Salvador DalĂ­ in Puerto BanĂșs, Marbella, Spain” [wiki dixit].

Let’s take another example. A discussion about the reglementations of the sizes of cucumbers and carrots to be sold in EU is a thing. This will produce a lot of reifications, in particular lots of correct size cucumbers and carrots and also algorithms for selecting them. And thrash, and algorithms for dispensing of that trash. And another discussions-things, like is it moral to dump the unfit carrots to the trash instead of using them to feed somebody who’s in need? or like the algorithm which states that when you go to the market, if you want to find the least poisoned vegetables then you have to pick them among those which are not the right size.

The same with the number 2, is a thing. One of it’s reifications is the set { { }, { { } } }. Once you start to discuss about sets, though, you are back in the world of things.

And so on.

I argue that one should understand from the outset that mathematics is distinct from the physical. Then it is possible to get on with the remarkable task of finding how mathematics fits with the physical, from the fact that we can represent numbers by rows of marks |  , ||, |||, ||||, |||||, ||||||, 
 (and note that whenever you do something concrete like this it only works for a while and then gets away from the abstraction living on as clear as ever, while the marks get hard to organize and count) to the intricate relationships of the representations of the symmetric groups with particle physics (bringing us back ’round to Littlewood and the Littlewood Richardson rule that appears to be the right abstraction behind elementary particle interactions).

However, note that   “the marks get hard to organize and count” shows only a limitation of the mark algorithm as an object, and there are two aspects of this:

  • to stir a discussion about this algorithm, thus to create a new thing
  • to recognize that such limitations are in fact limitations of our brains in isolation.

Because, I argue, brains (and their working) are real.  Thoughts are objects, in the sense used in this post! When we think about the number 2, there is a reification of out thinking about the number 2 in the brain.

Because brains, and thoughts, are made of an immensely big number of chemical reactions and electromagnetic  interactions, there is no ghost in these machines.

Most of our brain working is “low level”, that is we find hard to account even for the existence of it, we have problems to find the meaning of it, we are very limited into contemplating it in whole, like a self-reflecting mirror. We have to discuss about it, to make it into a thing and to contemplate instead derivative objects from this discussion.

However, following the path of this discussion, it may very well be that brains working thing can be understood as structure processing, with no need for external, high level, semantic, information based meaning.

After all, chemistry is structure processing.

A proof of principle argument for this is Distributed GLC.

The best part, in my opinion, of Kauffman’s post is, as it should, the end of it:

The key is in the seeing of the pattern, not in the mechanical work of the computation. The work of the computation occurs in physicality. The seeing of the pattern, the understanding of its generality occurs in the conceptual domain.

… which says, to my mind at least, that computation (in the usual input-output-with-bits-in-between sense) is just one of the derivative objects of the discussion about how brains (and anything) work.

Closer to the brain working thing, including the understanding of those thoughts about mathematics, is the discussion about “computation” as structure processing.

UPDATE: A discussion started in this G+ post.


Notes for “Internet of things not Internet of objects”

1.   Kevin Ashton  That ‘Internet of things’ thing

Conventional diagrams of the Internet include servers and routers and so on, but they leave out the most numerous and important routers of all: people.
The problem is, people have limited time, attention and accuracy—all of which means they are not very good at capturing data about things in the real world.
  • not things, objects!  Ashton writes about objects.
  • people are not good at capturing data, so let’s filter (i.e. introduce a bottleneck) the data for them, thank you!
  • however, people arrive to gather around  ideas and to discuss  despite the fact that “conventional diagrams of the Net leave out people”.
  • By having public discussions around an “idea” people arrive to filter creatively the information dump without resorting to artificial bottlenecks.  Non-human bottleneck stifle discussions!

Replaced further:

  • things by objects
  • ideas by things.
We’re physical, and so is our environment. Our economy, society and survival aren’t based on things or information—they’re based on objects. You can’t eat bits, burn them to stay warm or put them in your gas tank. Things and information are important, but objects matter much more. Yet today’s information technology is so dependent on data originated by people that our computers know more about things  than objects.
This looks like the credo of the Internet of Objects!
Do we want this?
2.     What are, for people, things and objects?

Here is a depiction of a thing [source]:


A thing  was the governing assembly  made up of the free people of the community, meeting in a place called a thingstead.
(“thing” in Germanic societies,  “res” for Romans, etc.)
Heidegger (The Thing):

Near to us are what we usually call things. The jug is a thing. What is a jug? We say: a vessel.  As a jug, the vessel is something self-sustained,  self-supporting, or independent.

An independent, self-supporting thing may become an object if we place it before us.

An object is a reification of a thing.
[Kenneth Olwig: “Heidegger, Latour and The Reification of Things:The Inversion and Spatial Enclosure of the Substantive Landscape of Things – the Lake District Case”, Geografiska Annaler: Series B 2013 Swedish Society for Anthropology and Geography]
An object is therefore real,  but all about thing and thingstead is lost.
Reification generally refers to making something real…
Reification (computer science), making a data model for a previously abstract concept.
3.  An example of a thing and some of it’s reifications:
Quotes  and images from here:
On 20 May 1515, an Indian rhinoceros arrived in Lisbon from the Far East.
After a relatively fast voyage of 120 days, the rhinoceros was finally unloaded in Portugal, near the site where the Manueline Belém Tower was under construction. The tower was later decorated with gargoyles shaped as rhinoceros heads under its corbels.[11]
A rhinoceros had not been seen in Europe since Roman times: it had become something of a mythical beast, occasionally conflated in bestiaries with the “monoceros” (unicorn), so the arrival of a living example created a sensation.
The animal was examined by scholars and the curious, and letters describing the fantastic creature were sent to correspondents throughout Europe. The earliest known image of the animal illustrates a poemetto by Florentine Giovanni Giacomo Penni, published in Rome on 13 July 1515, fewer than eight weeks after its arrival in Lisbon.

Valentim Fernandes, , saw the rhinoceros in Lisbon shortly after it arrived and wrote a letter describing it to a friend in Nuremberg in June 1515.  A second letter of unknown authorship was sent from Lisbon to Nuremberg at around the same time, enclosing a sketch by an unknown artist. DĂŒrer saw the second letter and sketch in Nuremberg. Without ever seeing the rhinoceros himself, DĂŒrer made two pen and ink drawings,[23] and then a woodcut was carved from the second drawing, the process making the print a reversed reflection of the drawing.[19][24]

The German inscription on the woodcut, drawing largely from Pliny’s account,[13] reads:

“ On the first of May in the year 1513 AD [sic], the powerful King of Portugal, Manuel of Lisbon, brought such a living animal from India, called the rhinoceros. This is an accurate representation. It is the colour of a speckled tortoise,[25] and is almost entirely covered with thick scales. It is the size of an elephant but has shorter legs and is almost invulnerable. It has a strong pointed horn on the tip of its nose, which it sharpens on stones. It is the mortal enemy of the elephant. The elephant is afraid of the rhinoceros, for, when they meet, the rhinoceros charges with its head between its front legs and rips open the elephant’s stomach, against which the elephant is unable to defend itself. The rhinoceros is so well-armed that the elephant cannot harm it. It is said that the rhinoceros is fast, impetuous and cunning.[26]
Comment: you can see here a thing taking shape.
Despite its errors, the image remained very popular,[5] and was taken to be an accurate representation of a rhinoceros until the late 18th century.
The pre-eminent position of DĂŒrer’s image and its derivatives declined from the mid-to-late-18th century, when more live rhinoceroses were transported to Europe, shown to the curious public, and depicted in more accurate representations.
Until the late 1930s, DĂŒrer’s image appeared in school textbooks in Germany as a faithful image of the rhinoceros;[6] in German the Indian rhinoceros is still called the Panzernashorn, or “armoured rhinoceros”. It remains a powerful artistic influence, and was the inspiration for Salvador DalĂ­‘s 1956 sculpture, Rinoceronte vestido con puntillas (Rhinoceros dressed in lace), which has been displayed at Puerto BanĂșs, in Marbella, since 2004.
Comment: that is an object! You can stick an RFID to it and it has clear GPS coordinates.
4.     Bruno Latour (From Realpolitik to Dingpolitik, or How to Make Things Public), writing about “object-oriented democracy”:

Who is to be concerned? What is to be considered? How to represent the sites where people meet to discuss their matters of concern?

How does the Internet of Objects respond to these questions about things and thingsteads?

People are going to use the Internet of Objects as an Internet of Things. How can we help them (us!) by designing a thing-friendly Internet of Things?

My guess and proposal is to try to put space (i.e. thingstead) into the IoT.  By design.
5.   Not the RFID space.  Not the GPS space.  This may be useful for the goal of inhuman optimization, but will not promote by itself the conversation needed to have around things and their reifications, the objects.
People are going to divert the ways of the IoT, designed with  this lack of appetite for human communication, as they succeeded previously!
For understanding why RFID and GPS  are not sufficient, let’s imagine, like Borges, that the world is a library.
  • RFID – name of the book
  • GPS – place on the shelf
Is this enough for me, reader, who wants to retrieve (and discuss with other readers about) a book without knowing it’s title, nor it’s position on a shelf?
No!  I have to call a librarian (the bottleneck), an inhuman and very efficient one, true,  who will give me a list of possible titles and who will fetch the book from the right shelf. I don’t have direct access to the library, nor my friends which may have different ideas about the possible titles and shelves where the book might be.
The librarian will optimize the book-searching and book-fetching, will optimize all this not for me, or for you, or for our friends, but for a bayesian individual in a bayesian society. (see Bayesian society)
What I would like is to have access to my library (in the big Universal Library) and to be able to share my spatial competences of using my library with my friends. That means a solution for the following problem, which  Mark Changizi  mentions in relation to e-books (but I think is relevant instead for the human IoT)

The Problem With the Web and E-Books Is That There’s No Space for Them

My personal library serves as extension of my brain. I may have read all my books, but I don’t remember most of the information. What I remember is where in my library my knowledge sits, and I can look it up when I need it. But I can only look it up because my books are geographically arranged in a fixed spatial organization, with visual landmarks. I need to take the integral of an arctangent? Then I need my Table of Integrals book, and that’s in the left bookshelf, upper middle, adjacent to the large, colorful Intro Calculus book.

6.  What else?  These notes are already rich enough, therefore please be free to stop reading, if you feel like.
Actually, this is a technical problem: how to create space where there is none, without using arbitrary names (RFID) or global (but arbitrary) coordinates (GPS)?
It is the same problem which we encounter in neuroscience: how the brain makes sense of space without using any external geometrical expertise? how to explain the “brain as a geometry engine” (as Koenderink) when there is no rigorous  model of computation for this brain behaviour?
There may be a point in holding that many of the better-known brain processes are most easily understood in terms of differential geometrical calculations running on massively parallel processor arrays whose nodes can be understood quite directly in terms of multilinear operators (vectors, tensors, etc).
In this view brain processes in fact are space.
I have two proposals for this, which go far beyond explanations which may fit into a post.  I put them  here only for the sake of giving an explanation of the motivations I have, and maybe for inviting the interested people to gather for discussing about these things.
It is about “computing with space”, which is the middle name of this blog.  The first name, chorasimilarity, is made by gluing Plato’s notion of space “chora” with  (self-)”similarity”, which is, I believe the essence of transforming space from a “vessel” into a self-sustaining, self-supporting thingstead.
The first proposal is to concentrate on completely asynchronous, purely local  models of distributing computing as a low-level basis for the architecture of a true IoT.
For example: mesh networks. (Thank you Peter Waaben.)
I know of only one model of computation which satisfy the previously mentioned demands and also  solves the problem of putting space into the Net:
It is based on actors which gather in an agora to discuss things that matter.  Literally!
But there is long way to  arrive to a proof of principle, at least, for such a space-rich IoT, which brings me to the second proposal, which (may) be too technical for this post, alluded here: A me for space.

Doing my homework: Heidegger, Latour on things

Heidegger The Thing, quotes:

All distances in time and space are shrinking. […] Man […] now receives instant information […] of events which he formerly learned about only years later, if at all.

Yet the frantic abolition of all distances brings no nearness; for the nearness does not consist in shortness of distance. […] Short distance is not in itself nearness. Nor is great distance remoteness.

What is this uniformity in which everything is neither far nor near — is, as it were, without distance?

Everything gets lumped together into uniform distancelessness. How? Is not this merging of everything into the distanceless more unearthy than everything bursting apart?

Near to us are what we usually call things. The jug is a thing. What is a jug? We say: a vessel […] As a jug, the vessel is something self-sustained […] self-supporting, or independent.

An independent, self-supporting thing may become an object if we place it before us.

Bruno Latour, From Realpolitik to Dingpolitik, or How to Make Things Public, quotes:

[…] an object-oriented democracy tries […] to bring tohether two different meanings of the word representation that have been kept separate in theory although they have remained always mixed in practice.

The first one […] designates the ways to gather the legitimate people around some issue.

The second one […] presents, or rather represents what is the object of concern to the eyes and ears of those who have been assembled around it.

Who is to be concerned?

What is to be considered?

How to represent the sites where people meet to discuss their matters of concern?

The short history of the rhino thing

Do you remember the story of the six blind men and the elephant?

It was six men of Indostan
To learning much inclined,
Who went to see the Elephant
(Though all of them were blind),
That each by observation
Might satisfy his mind.

Each blind man generalizes from his local perception to the whole elephant.


They don’t arrive to a consensus about what the elephant is.

And so these men of Indostan
Disputed loud and long,
Each in his own opinion
Exceeding stiff and strong,
Though each was partly in the right,
And all were in the wrong!

Why? Probably because their blindness means a lack of geometrical expertise. Coupled with their unwillingness for conversation, they don’t succeed into transforming the elephant into a thing.

But what is a thing? It is not an object, it is a conversation, and in the same time is the conversation about something.

An object is a  reification of a thing. Reality is made by objects, by consequence. For more along this line of thinking (inspired  by Kenneth Olwig) see Internet of things not internet of objects.

But this is only a story, right?

This  is the real history about the rhino thing. I am not talking about living rhinoceros, I am talking about how it went about the appearance of the rhino thing.

You may see this  history as an evolved version of the story of the six blind men and the elephant, where the six blind men arrive to have a conversation about the elephant and they succeed into transforming the elephant into a thing (i.e. they agree about the qualities, shape, location and uses of the elephant, as they felt it).

Only it is not about an elephant, but about a rhinoceros. Details, if you missed the link, HERE.


Later on, the rhino thing becomes an object, in fact many objects, among them a emblem used by an Italian duke


and a  real, 3D sculpture made by a Spanish artist (which you can feel and locate using GPS coordinates).