Better than extended beta move

Instead of the extended graphic beta move (proposed here and declared still in beta version in the graphic lambda calculus tutorial) is to couple the Reidemeister 2  move R2 with the graphic beta move. Here is how it can be done.

Let us define, for any scale parameter \varepsilon \in \Gamma, the following versions of the application gate and abstraction gate:

space_3

Remark that when \varepsilon =1 we can recover the usual application gate

space_4

and the usual abstraction gate

space_5

The graphic beta move and the move R2 can be coupled into the following nice move:

space_6

__________________

This will be used for making clear where the space is encoded in graphic lambda calculus and how.  Of course, it has to do with emergent algebras, seen in graphic lambda calculus. If you want to get ahead of explanations and figure out by yourself then the following posts will help:

___________________

(in case you see adds here: they have nothing to do with me or with this blog)

Advertisements

2 thoughts on “Better than extended beta move”

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s