Smooth geometry vs (nonsmooth calculus and combinatorics)

I am intrigued by this part of the  post from NEW

“The public talk by Cumrun Vafa puts out the classic message that strings have come to the rescue of physics, unifying QM and gravity, and that:

Smooth geometry of strings seems to explain all known interactions (at least in principle)”

(my emphasis)

Why “smooth”? Probably only because this is in the comfort zone of many.

However, there are two new fields of mathematics which deserve to be taken into consideration by physicists (or not, not my problem in fact):

  That’s the future!

UPDATE:  (24.03.2012) Congratulations to Endre Szemeredi, the Abel Prize Laureate 2012, “for his fundamental contributions to discrete mathematics and theoretical computer science, and in recognition of the profound and lasting impact of these contributions on additive number theory and ergodic theory.”

… and modern physics, maybe in 50 years.

About these ads

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s