Tag Archives: artificial life

Tay has been retired, Blade Runner style

It is always unexpected when fiction becomes real. Tay, the adolescent AI, survived for about 24 hrs on Twitter. She turned into something socially unacceptable. Then she has been retired. See Gizmodo story.

Almost two years ago I posted Microbes take over and then destroy the HAL 9000 prototype. I gave 9 seconds as an estimate for the chance of life of an AI in the real world, where there is no control and faced with  the “extremely dynamic medium of decentralized, artificial life based computation we all use every day“(that post suggests an artificial life, not AI version of the future internet).

Now, the story of Tay seems unbelievably close to the Blade Runner world. The genius of Philip K. Dick manifests here because  he mixes AI with synthetic life with real life.

Real people socially hacked Tay. Virtual microbes destroy HAL 9000. The common themes are: in a decentralized environment and AI vs life (real or virtual).

Not many people understand that today obsessions with security, control, privacy are all lost battles.

Mind tricks

One of my goals is to uncover the geometry in the computations. Most people see visualizations as cute, but unnecessary  additions.  Maybe with some very limited pedagogical value. Not the real thing.

The really funny thing is that, on average, people tend to take too seriously a visualization. Some animations trigger all sorts of reflexes which mislead the viewers into seeing too much.

The animal is there, skin deep. Eye deep.


A recent example of using visualizations for research  is how I arrived to build a kinesin like molecule by looking at the Y combinator and permutations.

This is a phenomenon which appeared previously in the artificial chemistry chemlambda. Recall how the analysis of the predecessor lambda term,  led to the introduction of chemlambda quines?

Same here.

Chemical computation is a sort of combinatorial movement, if this makes any sense. Lambda calculus or other means towards rigorous notions of computation clash with the reality: chemical computations, in living organisms, say, are horrendously complex movements of atoms and rearrangements of bonds. There is no input, nor output written with numbers. That’s all there is: movements and rearrangements.

Chemlambda marks some points by showing how to take lambda calculus as inspiration, then how we can see some interesting, movements and rearrangements related thing in the behaviour of the lambda term, then how we can exploit this for designing some pure (artificial) chemistry tour de force of unsupervised cascades of reactions which achieve some goal. Unsupervised, random!

OK, so here is a kinesin built in chemlambda. I see it works and I want to play a bit with it and also to show it.

The following animation has stirred some attention on 4chan, and less attention on google+, of course compared with others from the amazing chemlambda collection 🙂


It makes sense, you can relate with the two kinesins which meet together, they salute each other, then they go their way. One of them detaches from the microtubule (a particularly designed one, which allows kinesins to go in both directions, hm, because I can). The other roams a bit, quick, concerned.

It’s the result of randomness, but it conveys the right info, without introducing too much unrelated stuff.

The next one is about 4 kinesins on a circular microtubule.


This is a bit to much. They look like suspiciously quick moving spiders… Not something to relate to.

But still, there is no false suggestion in it.

People love more the following one, where there are 8 kinesins.


It looks like a creature which tries to feel the boundary of the frame. Cool, but misleading, because:

  • the coordinates of nodes of the graph in this representation are irrelevant
  • the boundary of the frame is not part of the model, it means nothing for the molecule.

In chemlambda there is a choice made: chemistry is separated from physics. The chemistry (so to say) part, i.e. the graph rewrites and the algorithm of application, is independent from the d3.js rendering of the evolution of the graph.

But people love to see graphs in space, they love to see boundaries and they relate with things which have an appearance of life (or some meaning).

That’s how we are made, no problem, but it plays mind tricks on us.

A clever influencer would play these tricks in favor of the model…

The viewers, if asked to support the research, would be less willing to do it after seeing the fast moving spiders…

I find this very entertaining!

For the record, here is another direction of thinking, inspired by the same permutations which led me to kinesins.

Replication, 4 to 9

In the artificial chemistry chemlambda  there exist molecules which can replicate, they have a metabolism and they may even die. They are called chemlambda quines, but a convenient shorter name is: microbes.
In this video you see 4 microbes which replicate in complex ways. They are based on a simpler microbe whose life can be seen live (as a suite of d3.js animations) at [1].
The video was done by screencasting the evolution of the molecule 5_16_quine_bubbles_hyb.mol and with the script quiner_experia, all available at the chemlambda GitHub repository [2].

[1] The birth and metabolism of a chemlambda quine. (browsers recommended: safari, chrome/chromium)

[2] The chemlambda repository: github.com/chorasimilarity/chemlambda-gui/blob/gh-pages/dynamic/README.md

Who wants to make a movie?

This animation is done on my laptop (a macbook pro), with scripts which are freely available at the chemlambda repository here.

No supercomputer, nor any costly device has been used to make it…

So, who wants to make a movie?

Other demos which utilise the new experia version: