Quantum experimenters Alice and Bob are actors (NTC vs TC, II)

… i.e. if you turn the diagrams which explain quantum protocols by 90 deg, then the graph rewrites which are used in the NTC (topology does not compute) categorical quantum mechanics transform into TC (topology computes) diagrams. (See NTC vs TC part 1 for the terminology.)

And Alice and Bob become GLC actors.  Indeed, they  behave like actors from Hewitt Actor model and moreover communicate by the intermediary of graph rewrites.

I shall come back to this with many details, for the moment I can’t do decent drawings, they will appear soon.

It is intriguing, right? Yes, because when you turn the diagrams by 90 deg, the time and space “directions” change places. Moreover, the Alice from the experiment 1 (described by what appears in categorical quantum mechanics as the process 1, a decorated graph) is united with the Alice from the experiment 2 (described by what appears as the process 2, which is equivalent by graph rewrites with the process 1). That is, if you turn the diagrams by 90 deg, the two instances of Alice (or all the instances of Alice from all the intermediary steps of the graph rewrites) form the GLC actor Alice. Same for Bob, of course.

What this equivalence means, is intriguing. Very much intriguing.



Hamiltonian systems with dissipation, slides

If you want to see my other, applied math side, then here are the slides for a talk here at Lille, scheduled for Thu 12.06.2014.

Hamiltonian systems with dissipation

This is not what I worked these weeks, but a preparation. Soon will be finished something called “the symplectic Brezis-Ekeland-Nayroles principle”, written in collaboration with Gery de Saxce. Together with Gery, we work on the rigorous formulation of a generalization of some parts of convex analysis, since a number of years already, see the articles which contain the word “bipotential” here.

UPDATE: If you are in Paris next Tue June 17 then you may come to the seminaire D’Alembert where, due to the kind invitation of Djimedo Kondo,  I shall give a variant of the talk on Hamiltonian systems with dissipation, with some updates on the work done with Gery.



Gamification of peer review with Ingress

Seems possible to adapt Ingress in order to play the Game of Research and Review.

In the post MMORPGames at the knowledge frontier I propose a gamification of peer review which is, I see now very close to the Ingress game:

“… we could populate this world and play a game of conquest and exploration. A massively multiplayer online game.  Peer-reviews of articles decide which units of places are wild and which ones are tamed. Claim your land (by peer-reviewing articles), it’s up for grabs.  Organize yourselves by interacting with others, delegating peer-reviews for better management of your kingdoms, collaborating for the exploration of new lands.

Instead of getting bonus points, as mathoverflow works, grab some piece of virtual land that you can see! Cultivate it, by linking your articles to it or by peer-reviewing other articles. See the boundaries of your small or big kingdom. Maybe you would like to trespass them, to go into a near place? You are welcome as a trader. You can establish trade with other near kingdoms by throwing bridges between the land, i.e. by writing interdisciplinary articles, with keywords of both lands. Others will follow (or not) and they will populate the new boundary land you created.”

In Ingress (from the wiki source):

“The gameplay consists of establishing “portals” at places of public art, landmarks, cenotaphs, etc., and linking them to create virtual triangular fields over geographic areas. Progress in the game is measured by the number of Mind Units, i.e. people, nominally controlled by each faction (as illustrated on the Intel Map).[7][8] The necessary links between portals may range from meters to kilometers, or to hundreds of kilometers in operations of considerable logistical complexity.[9] International links and fields are not uncommon, as Ingress has attracted an enthusiastic following in cities worldwide[10] amongst both young and old,[11] to the extent that the gameplay is itself a lifestyle for some, including tattoos. ”


Instead of public art, Portals could be openaccess articles (from the arXiv, for example, not from the publishers).


“A portal with no resonators is unclaimed; to claim a portal for a faction, a player deploys at least one resonator on it.”

Resonators are reviews.

Links between portals are keywords.


Something to think about!




Topology does not compute vs topology computes (I)

The article Zipper logic   arXiv:1405.6095  contains in its last section a discussion about the role of topology in computing formalisms which use topological objects, like tangle diagrams, or other graphs, and graph rewrites.

The purpose of this post is to start a discussion about the differences between two uses of graph rewrites in such formalisms.

I shall use further the NTC vs TC denomination suggested by Louis Kauffman instead of the longer one:

  • NTC = “topology does not compute” , meaning that the graph rewrites are NOT part of the computation notion
  • TC = “topology computes”, meaning that the graph rewrites are the fundamental blocks of the computation notion.

There are many articles which fall in the NTC camp, among them the ZX calculus of Coecke and Duncan from Interacting Quantum Observables: Categorical Algebra and Diagrammatics   arXiv:0906.4725 [quant-ph] , which is a part of the beautiful Categorical Quantum Mechanics. I shall use this article as an anchor which allows to compare with the TC camp. In future posts I shall add more articles to the list, because this is a rather big research field now.

Chemlambda is in the TC camp, like zipper logic.

So let us compare them, concretely.

At first sight they look related, they seem to have the same fundamental genes, say like an elephant (NTC) has almost all genes in common with a mouse (TC). They are both graph rewrites systems, they both use almost the same family of graphs (details later), they both speak about computation:

  • in the NTC article case it is about quantum computing, there is also a practical computing arm, the Quantomatic project
  • in the TC article case is about distributed, decentralized computing, and there is  the distributed GLC project.

The goals are different, the means are different, the NTC camp is much more developed than the TC camp, the question is:

Is there anything  fundamentally different in the TC camp?


The answer is YES. There are several fundamentally different things in the TC camp, maybe the biggest among them being the different role played by graph rewrites, summarized as NTC vs TC.

Let’s see in more detail, by comparing ZX with chemlambda.


In order to see what is really different, it is useful to make the two formalisms as alike as possible. I shall start by discussing if there is any difference between the graphs which appear in ZX from the ones which appear in chemlambda.

The graphs from ZX don’t have oriented arrows, but instead there is a global orientation convention, say from up to down when represented on page.

In ZX here is also a global horizontal “simultaneity” of graphical elements, which is part of the recipe of associating to a ZX graph an object related to a Hilbert space.


In chemlambda the graphs have oriented arrows. There is no global arrow orientation, nor any horizontal simultaneity.

Otherwise, both in ZX and chemlambda are used loops, free arrows and “half-arrows”.

So, there is an obvious procedure to associate to a graph in chemlambda a graph from ZX, by adding to the graph in chemlambda a global arrow orientation and a horizontal simultaneity.

This means, for example that the graph of the K combinator from chemlambda is represented in ZX like this:

two_kThe price is that in ZX there are several new graphical elements which need to be introduced, like the CAP, the CUP and the CROSS. Here is the list of all graphical elements needed to represent chemlambda graphs in ZX.


What about the graph rewrites? Is not clear to me if the chemlambda graph rewrites can be done as finite sequences of ZX graph rewrites, but this is not very important for this discussion. There seems to be anyways a kind of a fundamental alphabet of graph rewrites which keeps appearing everywhere. I shall not be worried about the detailed graph rewrites, but however here is how the FAN-IN and the beta moves from chemlambda appear in ZX translation.


It is worthy to mention that the global arrow orientation and the horizontal simultaneity used in ZX introduces new moves to (the translation of) chemlambda graphs which are related to these constraints, and which are not needed in chemlambda.

Now we are close to see the differences.

There is a recipe for associating to each graph G from ZX an object O(G) on a Hilbert space. This is done by using the global arrow orientation convention and the horizontal simultaneity, along with a dictionary which associates to any graphical element from ZX something from a Hilbert space.


Here is the important thing about the NTC ideology:  if two graphs G and G' have the property that we can go from G to G' by a finite sequence of ZX graph rewrites, then O(G) = O(G').

Each graph G from ZX represents a computation. The graph rewrites from ZX are used to prove that TWO computations are equivalent.

More than this: a graph from ZX represents a computation in the sense that the global arrow orientation is a global time orientation, the horizontal simultaneity express space simultaneity, the CAP is a preparation, the CUP is a measurement. The nodes of the graph are GATES and the arrows of the graph are WIRES which transmit some signals.

That is why, in the NTC camp the graph rewrites DO NOT COMPUTE. The graph rewrites are used to prove an equivalence of two computations, like for example in the case of graphs which represent quantum teleportation protocol.

Now, in chemlambda, a graph is NOT a computation. Each graph is like a chemical molecule, with nodes as atoms and arrows as bonds. There is only one computation in chemlambda, which is done by graph rewrites.

So, even if we can translate chemlambda graphs into ZX graphs, there is this difference.

Suppose G is a ZX graph which is obtained by translating a chemlambda graph, as previously explained. Let G' be another such graph. Suppose that we can arrive from G to G' by a sequence of translations of chemlambda moves (graph rewrites), maybe also by using some of the supplementary “topological” moves which we need in ZX because of the global orientation and simultaneity constraints.

What do we have in ZX?

The graphs G and G' represent two computation which are equivalent.

What do we have in chemlambda?

The graphs G and G' represent the beginning and end of a computation done by the graph rewrites which in ZX serve to prove equivalence of computations.

This very big difference between NTC and TC has a big effect in all the rest of the formalisms.