Chemical actors

UPDATE: Clearly needed a mix of the ActorScript of Carl Hewitt with GLC and chemlambda. Will follow in the months to come!


Thinking out loud about a variant of the actor model (chapter 3 here), which uses graphic lambda calculus or the chemical concrete machine. The goal is to arrive to a good definition of an Artificial Chemical Connectome.

Have remarks? Happy to read them!

A chemical actor is the following structure:

  • a graph A \in GRAPH  (or a molecule A \in MOLECULES)
  • with a unique ID name ID
  • with a numbering (tagging)  of a (possibly empty) part of it’s free arrows
  • with a behaviour, to be specified further.


A communication is:

  • a graph  B \in GRAPH  (or a molecule)
  • with a source ID and a target ID
  • with a part of free arrows tagged with tags compatible (i.e. the same) with the ones from the graph from the source ID
  • with another part of free arrows tags with tags compatible with the ones from the graph from the target ID


The actor target ID receives a communication from the actor source ID and it becomes:


At this point the actor which has target ID exhibit the following behaviour:

  • performs one, several, or in a given order, etc of graph rewrites (only the + unidirectional moves)  which involve at least an arrow between A and B
  • following a given algorithm, splits into a new actor and a communication B’ which has as target arrows the one from the lower part of the previous figure (but with another target ID)
  • or creates a new actor by using only (-) moves

Remark: the numbers n, m could be uniformly bounded to 2, or 4, or 6, according to user’s wishes. Take a look at the Ackermann machine, for inspiration.


3 thoughts on “Chemical actors”

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s