Arxiv version of the chemical concrete machine

I’m working on a  draft of the Chemical concrete machine paper,  I look forward for receiving your input concerning it. As you may see, the last part (section 4) is not yet finished, but it will be, tomorrow, along with any correction or suggestion I shall receive. There is not yet an acknowledgement, but will be added soon, hopefully mentioning all persons who helped me with these ideas. Also, of course, the bibliography is not in final form.

As you see, it is yet in an intermediary form between the paper style and the web tutorial style, I have not decided yet if is good to behave like the net does not exist, or to use a more colloquial form of exposition.

I welcome and ask for your corrections, suggestions, whatever.

UPDATE:   I think that’s a stable version, appeared as   arXiv:1309.6914

Advertisements

2 thoughts on “Arxiv version of the chemical concrete machine”

  1. Might the ER=EPR idea, discussed http://arxiv.org/abs/1308.0289, be a form of a GLOBAL FAN-OUT move?

    Are entangled particles connected by wormholes? Support for the ER=EPR conjecture from entropy inequalities

    Hrant Gharibyan, Robert F. Penna
    (Submitted on 1 Aug 2013)
    If spacetime is built out of quantum bits, does the shape of space depend on how the bits are entangled? The ER=EPR conjecture relates the entanglement entropy of a collection of black holes to the cross sectional area of Einstein-Rosen (ER) bridges (or wormholes) connecting them. We show that the geometrical entropy of classical ER bridges satisfies the subadditivity, triangle, strong subadditivity, and CLW inequalities. These are nontrivial properties of entanglement entropy, so this is evidence for ER=EPR. We further show that the entanglement entropy associated to classical ER bridges has nonpositive interaction information. This is not a property of entanglement entropy, in general. For example, the entangled four qubit pure state |GHZ_4>=(|0000>+|1111>)/\sqrt{2} has positive interaction information, so this state cannot be described by a classical ER bridge. Large black holes with massive amounts of entanglement between them can fail to have a classical ER bridge if they are built out of |GHZ_4> states. States with nonpositive interaction information are called monogamous. We conclude that classical ER bridges require monogamous EPR correlations.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s