Local FAN-IN eliminates GLOBAL FAN-OUT (II)

As I wrote in   Local FAN-IN eliminates global FAN-OUT (I) , the introduction of the three moves (FAN-IN and the two DIST moves) eliminates global FAN-OUT from the lambda calculus sector of the graphic lambda calculus.  In this post we shall see that we can safely eliminate other two moves, namely R1a, R1b, as well as improving the behaviour of the crossings from the \lambda-TANGLE sector.

The equilibrium is thus established: three new moves instead of the three old moves. And there are some unexpected advantages.

______________

Proposition.

Proof.  (a) Done in the following picture.

frob_6

The proof of (b) is here:

frob_7

Finally, here is the proof of (c):

frob_8

______________

The \lambda-TANGLE sector of the graphic lambda calculus is obtained by using the lambda-crossing macros

frob_9

In Theorem 6.3   arXiv:1305.5786 [cs.LO]  I proved that all the oriented Reidemeister moves (with the crossings replaced by the respective macros), with the exception of the moves R2c, R2d, R3a and R3h, can be proved by using the graphic beta move and elimination of loops.  We can improve the theorem in the following way.

Theorem.  By using the graphic beta move, elimination of loops, FAN-IN and CO-COMM, we can prove all the 16 oriented Reidemeister moves.

Proof. The missing moves R2c, R2d, R3a and R3h are all equivalent (by using the graphic beta move and elimination of loops, see this question/answer at mathoverflow) with the following switching move, which we can prove with FAN-IN and CO-COMM:

frob_2

The proof is done.

Advertisements

6 thoughts on “Local FAN-IN eliminates GLOBAL FAN-OUT (II)”

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s