Scattered thoughts about creativity

For a very nice and truthful depiction of the process of (scientific?) discoveries I recommend the article “The colossal pile of jibberish behind discovery, and it’s implications for science funding” by Mark Changizi [title copied as appeared in Discover Magazine].

I shall give some excerpts and then I shall add some comments of my own.

“Far be it from me to debunk the mythical, magician-like qualities sometimes attributed to us scientists, but the dirtiest little secret in science is that our science minds are just as dirty and unbeautiful as everyone else’s… and this has important implications, both for aspiring students and for how science is funded. […]

…how we scientists find our ideas is ugly, and frankly embarrassing to show folks. That’s why we don’t put this part of the process into our journal articles or books.

But the fact that we never show the dirty mental work underlying our discoveries has bothered me, for at least two reasons.

First, students of science would be best prepared for making their own discoveries if they could see more examples of what their older mentors actually did to make theirs. If students mistakenly conclude that their mentors are magical shaman geniuses who can inscrutably channel discoveries at will, they’ll mistakenly conclude that discovery is out of their league. […] And with the discovery process not only demystified but also laid before them, students will be able to absorb brainstorming and idea-finding techniques that others have found successful. […]

Second, if this crucial step in the discovery process is not well appreciated, then the funding mechanisms for science won’t work well. […] “Dear National Science Foundation: I plan on scrawling hundreds of pages of notes, mostly hitting dead ends, until, in year 4, I hit pay dirt.” Yet that’s exactly what’s needed for the big breakthroughs that big scientific advances require […]

… it occurred to me recently that there is a simple way to begin illustrating just how much junk lies in the science trunk. Of the thirty to forty research notebooks I’ve filled with tiny handwriting over the last dozen years, I can show a sample. So, I photographed about a year-and-a-half’s worth of notes. […]

Now, the photographs don’t possess enough resolution to read much from them. My intent here is to indicate just how much of the sort of notes and brainstorming goes on.

And it also shields me from the humiliation of you reading hundreds of pages of my disorganized senselessness.

…That same disorganized senselessness that is vital to the creative process.”


Everybody has loads of notebooks, right? Or maybe not, instead lots of files with half written ideas, always in the process of being rewritten and finally abandoned after canibalizing some useful bits?

I remember that the most worthy part of my first notebook (when I was 10) was about how magnets work. I was fascinated by them (as well as by mirrors).  I was trying to understand how a magnet attracts or repels another without touching it. A magnet is basically just a piece of rock, it sits there doing nothing until another magnet (or a piece of iron) comes close and then, by magic, it moves. Not only that a magnet comes into motion only when another magnet is close, but it’s capacity to move never consumes, not even after ages pass by (arrived to this conclusion after repeating the experiment for two weeks). If I drop a rock on the ground I have have to lift it up again in order to make it move (by letting it fall). But  a magnet never loose it’s energy.
And then, the night after after a biology class I had an epiphany. You see, think about the magnet as being a heart. When interacting with another magnet, by a systole it sends it’s energy to the other magnet, then it relax, having a diastole and the energy comes back, closing a cicle. It has to be this!

Concerning the “embarassment factor”, I totally agree that it is better to show the work behind a discovery than pretend that it never happened. For three reasons:

– it might give new ideas to others, even about unrelated subjects,

– it stimulates the dialogue, which sometimes can be very helpful for the process of discovery,

– it improves the style of presentation, it gives courage to express one’s personal viewpoint in a more sincere way, thus creating variety where there is very little. Without this variety how to discern among two scientists, one which systematically explores a tiny patch and writes a hundred papers on the same inequality in functional analysis (say, random subject!), exhausting the subject like a vacuum cleaner, and the other who opens new directions of exploration, without going to the last detail, but giving enough clues so that the idea has a future. Both types of researchers are needed, but the first type is overrepresented, because of the modern risk aversion policies in science.

Due to the easiness of sharing, which is a feature of present day communication trough the net, this is, moreover, feasible.

I close this with an example of my own: I just discovered a draft paper from 2006, called “Deconstructing analysis I.” (there never was any II, or was it?), which contains information comparable with the one from Changizi’ example, only that is readable. I post it here just for fun, here is it, with its glorious title:

“Deconstructing analysis I. Dilatation structures for  sub-Riemannian and fractal  spaces” (2006)

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s