Slide equivalence of knots and lambda calculus (I)

Related: (Graphic) beta rule as braiding.

Louis Kauffman proposes in his book Knots and Physics  (part II, section “Slide equivalence”), the notion of slide equivalence. In his paper “Knotlogic” he uses slide equivalence (in section 4) in relation to the self-replication phenomenon in lambda calculus. In the same paper he is proposing to use knot diagrams as a notation for the elements and operation of a combinatory algebra (equivalent with untyped lambda calculus).

There is though, as far as I understand, no fully rigorous relation between knot diagrams, with or without slide equivalence, and untyped lambda calculus.
Further I shall reproduce the laws of slide equivalence (for oriented diagrams), following Kauffman’ version from Knots and physics. Later, I shall discuss about the relations with my graphic lambda calculus.

Here are the laws, with the understanding that:

1. the unoriented lines may have any orientation,

2. For any version of orientation which is depicted, one may globally change, in a coherent way, the orientation in order to obtain a valid law.

Law (I’) is this one:

Law (II’) is this:

Law (III’):

Law (IV’):

Obviously, we have four gates, like in the lambda calculus sector of the graphic lambda calculus. Is this a coincidence?

UPDATE (06.06.2014): The article Zipper logic  arXiv:1405.6095  answers somehow to this, see the post Halfcross way to pattern recognition (in zipperlogic).A figure from there is:

halfcross_1

 

See also the posts Curious crossings (I) and Distributivity move as a transposition (Curious crossings II).

_____________________________

 

Advertisements

3 thoughts on “Slide equivalence of knots and lambda calculus (I)”

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s