What’s the difference between uniform and coarse structures? (I)

See this, if you need: uniform structure and coarse structure.

Given a set X, endowed with an uniform structure or with a coarse structure, Instead of working with subsets of X^{2}, I prefer to think about the trivial groupoid X \times X.

Groupoids. Recall that a groupoid is a small category with all arrows invertible. We may define a groupoid in term of it’s collection of arrows, as follows: a set G endowed with a partially defined operation m: G^{(2)} \subset G \times G \rightarrow G, m(g,h) = gh, and an inverse operation inv: G \rightarrow G, inv(g) = g^{-1}, satisfying some well known properties (associativity, inverse, identity).

The set Ob(G) is the set of objects of the groupoid, \alpha , \omega: G \rightarrow Ob(G) are the source and target functions, defined as:

– the source fonction is \alpha(g) = g^{-1} g,

– the target function is \omega(g) = g g^{-1},

– the set of objects is Ob(G) consists of all elements of G with the form g g^{-1}.

Trivial groupoid. An example of a groupoid is G = X \times X, the trivial groupoid of the set X. The operations , source, target and objects are

(x,y) (y,z) = (x,z), (x,y)^{-1} = (y,x)

\alpha(x,y) = (y,y), \omega(x,y) = (x,x),

– objects (x,x) for all x \in X.

In terms of groupoids, here is the definition of an uniform structure.

Definition 1. (groupoid with uniform structure) Let G be a groupoid. An uniformity \Phi on G is a set \Phi \subset 2^{G} such that:

1. for any U \in \Phi we have Ob(G) \subset U,

2. if U \in \Phi and U \subset V \subset G then V \in \Phi,

3. if U,V \in \Phi then U \cap V \in \Phi,

4. for any U \in \Phi there is V \in \Phi such that VV \subset U,  where VV is the set of all gh with g, h \in V and moreover (g,h) \in G^{(2)},

5. if U \in \Phi then U^{-1} \in \Phi.

Here is a definition for a coarse structure on a groupoid (adapted from the usual one, seen on the trivial groupoid).

Definition 2.(groupoid with coarse structure) Let G be a groupoid. A coarse structure  \chi on G is a set \chi \subset 2^{G} such that:

1′. Ob(G) \in \chi,

2′. if U \in \chi and V \subset U then V \in \chi,

3′. if U,V \in \chi then U \cup V \in \chi,

4′. for any U \in \chi there is V \in \chi such that UU \subset V,  where UU is the set of all gh with g, h \in U and moreover (g,h) \in G^{(2)},

5′. if U \in \chi then U^{-1} \in \chi.

Look pretty much the same, right? But they are not, we shall see the difference when we take into consideration how we generate such structures.

Question. Have you seen before such structures defined like this, on groupoids? It seems trivial to do so, but I cannot find this anywhere (maybe because I am ignorant).

UPDATE (01.08.2012): Just found this interesting paper  Coarse structures on groups, by Andrew Nicas and David Rosenthal, where they already did on groups something related to what I want to explain on groupoids. I shall be back on this.

Advertisements

2 thoughts on “What’s the difference between uniform and coarse structures? (I)”

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s