A beautiful paper by Yann Ollivier and Cedric Villani

A curved BRUNN–MINKOWSKI INEQUALITY on the discrete hypercube OR: WHAT IS THE RICCI CURVATURE OF THE DISCRETE HYPERCUBE?

The Brunn-Minkowski inequality says that the log of the volume (in euclidean spaces) is concave. The concavity inequality is improved, in riemannian manifolds with Ricci curvature at least K, by a quadratic term with coefficient proportional with K.

The paper is remarkable in many ways. In particular are compared two roads towards curvature in spaces more general than riemannian: the coarse curvature introduced by Ollivier and the other based on the displacement convexity of the entropy function (Felix Otto , Cedric Villani, John Lott, Karl-Theodor Sturm), studied by many researchers. Both are related to Wasserstein distances . NONE works for sub-riemannian spaces, which is very very interesting.

In few words, here is the description of the coarse Ricci curvature: take an epsilon and consider the application from the metric space (riemannian manifold, say) to the space of probabilities which associates to a point from the metric space the restriction of the volume measure on the epsilon-ball centered in that point (normalized to give a probability). If this application is Lipschitz with constant L(epsilon) (on the space of probabilities take the L^1 Wassertein distance) then the epsilon-coarse Ricci curvature times epsilon square is equal to 1 minus L(epsilon) (thus we get a lower bound of the Ricci curvature function, if we are in a Riemannian manifold). Same definition works in a discrete space (this time epsilon is fixed).

The second definition of Ricci curvature comes from inverse engineering of the displacement convexity inequality discovered in many particular spaces. The downside of this definition is that is hard to “compute” it.

Initially, this second definition was related to the L^2 Wasserstein distance which, according to Otto calculus, gives to the space of probabilities (in the L^2 frame) a structure of an infinite dimensional riemannian manifold.

Concerning the sub-riemannian spaces, in the first definition the said application cannot be Lipschitz and in the second definition there is (I think) a manifestation of the fact that we cannot put, in a metrically acceptable way, a sub-riemannian space into a riemannian-like one, even infinite dimensional.

### Like this:

Like Loading...

*Related*

## One thought on “Curvature and Brunn-Minkowski inequality”